Трехмерная визуализация результатов ультразвукового контроля - Профессия «дефектоскопист» как она есть | Дефектоскопист.ру
Профессия «дефектоскопист» как она есть | Дефектоскопист.ру

Старый 30.01.2013, 18:05   #1
admin
Администратор
 
Аватар для admin
 
Регистрация: 16.04.2012
Сообщений: 4,330
Благодарил(а): 71 раз(а)
Поблагодарили: 505 раз(а)
Репутация: 463
По умолчанию Трехмерная визуализация результатов ультразвукового контроля

Трехмерная визуализация результатов ультразвукового контроля
Об авторе

Самедов Явер Юзифович
Зав. лабораторией автоматизации НК ОАО НПО ЦНИИТМАШ (Москва), к. т. н., III уровень по акустическому, вихретоковому и визуально-измерительному видам НК.

Результаты УЗК могут быть представлены в виде А-, В-, С- или D-разверток. Они отображают собой то или иное плоскостное сечение контролируемого объекта. В настоящее время результаты ручного контроля в основном представляются в виде А-развертки.
Представление результатов УЗК в трехмерном виде позволит повысить эффективность системы оператор-дефектоскоп. В связи с этим было решено применить методы, используемые в компьютерной графике для моделирования поверхности объемных объектов, с целью трехмерного отображения дефектов, обнаруженных с помощью автоматизированных систем УЗК. В этой работе при построении поверхностей выявленных дефектов учитываются только временные характеристики отраженных сигналов (т. е. координаты отражающих точек на поверхности дефекта).
Моделирование какой-либо поверхности - это построение математической модели поверхности с помощью некоторой функции (или набора функций) с заданными областями определений. После построения модели поверхности необходимо ее визуализировать, т. е. отобразить смоделированную поверхность на экране дисплея.
Для построения объемной модели был выбран метод с использованием функции радиального базиса (Radial Basis Functions, RBF). Основная идея данного метода состоит в описании поверхности тела одной единственной функцией f(x,y,z) = О, которая задается в неявном виде. Функция f(x,y,z) имеет вид:
где N - число точек исходного набора, Р - соответствует некоторой точке с координатами (x,y,z), Р - соответствует точке Рi - исходного набора с координатами (хi, yi, zi), р(Р) = с0 + с1х+с1y+ c3z - полином первой степени, IP— Р1I - Евклидова норма втрехмерном пространстве, ?i - коэффициенты интерполяции, ф - базисная функция.
Опуская математические преобразования, перейдем к полученным результатам. Для их проверки первоначально был проведен компьютерный эксперимент. В качестве исходных данных были использованы данные лазерного сканирования гипсовой копии головы человека (рис. 1). Количество точек - 1488. В эксперименте был использован компьютер следующей конфигурации: Intel PentiuM 1300 МГц (Сегйгто), 512 Мбайт, РАМ, операционная система - WindowsХР. Все алгоритмы были реализованы в среде MatLab 6.5.
Рис. 1. Множество точек в трехмерном пространстве, полученное после сканирования гипсовой копии головы человека
Рис. 2. Визуализация модели гипсовой копии головы человека с использованием PRF (а) и CSRBF(б)
Рис. 3. Множество точек в трехмерном пространстве, расположенных случайным образом на поверхности куба

На рис. 2 приведены результаты построения поверхностей с использованием метода РВF и его модифицированного варианта CSRBF Модифицированный вариант предполагает меньшее количество вычислений. Численные показатели процессов компьютерного моделирования и визуализации модели приведены в табл. 1. Внешний вид построенных моделей практически не отличается. Время визуализации - время, необходимое компьютеру для прорисовки модели, отличается в разы. Эти результаты указывают на эффективность применения модели CSRBF с точки зрения времени.
Табл. 1

[table=border:1px solid black:2cr84j94][tr=][td=border:1px solid black]Метод построения модели[/td][td=border:1px solid black]Время построения модели, с[/td][td=border:1px solid black]Время визуализации модели, с[/td][/tr]
[tr=][td=border:1px solid black]PRF[/td][td=border:1px solid black]48,4[/td][td=border:1px solid black]1526,8[/td][/tr]
[tr=][td=border:1px solid black]CSRBF[/td][td=border:1px solid black]24,1[/td][td=border:1px solid black]112,14[/td][/tr][/table:2cr84j94]

Для численной оценки погрешностей при использовании этих моделей необходимо восстановить объект с заранее известными значениями площади поверхности и объема. Этому кри-терию отвечает куб. Площадь сечения в плоскости z = О и объем куба (V) с единичной длиной ребра равны 1. Был получен набор точек в трехмерном пространстве, расположенных случайным образом на поверхности куба (рис. 3).
Рис. 4. Визуализация куба, построенного с помощью РВF
Рис. 5. Сечение куба, построенного с помощью РВF плоскостью z = 0

Количество исходных точек 2000. Первоначально были произведены расчеты с применением РВР модели, а далее - с применением CSRBF модели. Результаты визуализации приведены на рис. 4 - 7. В табл. 2 приведены показатели, характеризующие точность построения.
Табл. 2

[table=border:1px solid black:2cr84j94][tr=][td=border:1px solid black]Метод [/td][td=border:1px solid black]Объем[/td][td=border:1px solid black]Площадь[/td][td=border:1px solid black]Площадь сечения[/td][td=border:1px solid black]Погрешность объема, %[/td][td=border:1px solid black]Погрешность площади, %[/td][td=border:1px solid black]Погрешность сечения, %[/td][/tr]
[tr=][td=border:1px solid black]PRF[/td][td=border:1px solid black]0,9999[/td][td=border:1px solid black]5,6442[/td][td=border:1px solid black]1[/td][td=border:1px solid black]0,01[/td][td=border:1px solid black]5,93[/td][td=border:1px solid black]0[/td][/tr]
[tr=][td=border:1px solid black]CSRBF[/td][td=border:1px solid black]0,9998[/td][td=border:1px solid black]5,6450[/td][td=border:1px solid black]1,0067[/td][td=border:1px solid black]0,02[/td][td=border:1px solid black]5,92[/td][td=border:1px solid black]0,67[/td][/tr][/table:2cr84j94]

Как следует из полученных результатов, куб, смоделированный с помощью PRF и куб, смоделированный с помощью CSRBF практически не отличаются. Погрешности вычисления объема, площади поверхности и площади сечения имеют в обоих случаях одинаковый порядок, но время выполнения алгоритмов с использованием CSRBF существенно ниже, чем время выполнения с использованием PRF. Это подтверждает целесообразность использования CSRBF
Следует обратить внимание на форму сечения в плоскости z =0. Как видно из рис. 5 и рис. 7. углы квадрата несколько закруглены. Это объясняется тем, что PRF (CSRBF) - дифференцируема во всех точках, где она определена, и поэтому должна быть гладкой и непрерывной. В связи с этим к моделированию «острых» углов и ребер при помощи PRF (CSRBF) нужно относиться вниматель-но: для наиболее адекватного моделирования скопление точек в районе углов и ребер должно быть более плотным.
Рис. 6. Визуализация куба, построенного с помощью CSRBF
Рис. 7. Сечение куба плоскостью z = 0, построенного с помощью CSRBF
Рис. 8. Графический интерфейс программы визуализации

Значительные погрешности вычисления площади поверхности обусловлены погрешностью триангуляции и тем фактом, что в районе ребер плотность скопления точек не отличается от плотности скопления на гранях. С учетом изложенного было разработано специализированное программное обеспечение для визуализации результатов УЗК. На рис. 8 показан графический интерфейс программы визуализации. Эта программа была опробована на автоматизированной установке УЗК прокатных валков. При УЗК прокатных валков были обнаружены дефектные зоны. На рис. 9 отображены результаты контроля валка с внутренним дефектом, полученные по данным последовательного кругового прозвучивания валка.
Рис.9. Результаты УЗК валка с внутренним дефектом
Рис. 10. Компьютерная визуализация дефектной области (а) и эквивалентный эллипсоид (б)

Результат визуализации дефектной зоны показан на рис. 10а. Для построения эквивалентного эллипсоида был применен метод наименьших квадратов. Результат построения эквивалентного эллипсоида показан на рис. 10б.
Таким образом, предлагаемый подход позволяет не только получать реалистичные картины внутренних дефектов, но и производить количественные измерения размеров дефектов (объем, площадь поверхности и любого сечения и т. д.). Полученные результаты могут быть полезны при проведении прочностных расчетов.
admin вне форума   Ответить с цитированием
Старый 30.01.2013, 18:13   #2
admin
Администратор
 
Аватар для admin
 
Регистрация: 16.04.2012
Сообщений: 4,330
Благодарил(а): 71 раз(а)
Поблагодарили: 505 раз(а)
Репутация: 463
По умолчанию Re: Трехмерная визуализация результатов ультразвукового конт

Самедов Ю.А. Трехмерная визуализация результатов ультразвукового контроля. − В мире НК. − Сентябрь 2007 г. − № 3 (37). − С. 16−18. Статья любезно предоставлена редакцией журнала «В мире НК» (http://www.ndtworld.com).
admin вне форума   Ответить с цитированием
Старый 30.01.2013, 21:37   #3
USM35 XS
Профессионал
 
Аватар для USM35 XS
 
Регистрация: 24.08.2012
Адрес: Сызрань
Сообщений: 1,614
Благодарил(а): 39 раз(а)
Поблагодарили: 317 раз(а)
Репутация: 299
По умолчанию Re: Трехмерная визуализация результатов ультразвукового конт

В целом идея хорошая, самому интересно иногда побаловаться подобным. Однако о массовом применении данной технологии говорить нельзя.
__________________
Чем больше узнаёшь про УЗК, тем меньше знаешь УЗК.
Царь прикажет - дураки найдутся.
USM35 XS на форуме   Ответить с цитированием
Ответ
Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Современная аппаратура для УЗК металлоконструкций admin Статьи о дефектоскопии 4 03.04.2014 09:57
Автоматизированное устройство для вихретокового контроля рез admin Статьи о дефектоскопии 1 06.04.2013 16:14
О повышении производительности вихретокового контроля admin Статьи о дефектоскопии 1 05.02.2013 09:06
О применении инструментальных методов контроля локальной гер admin Статьи о дефектоскопии 1 29.12.2012 07:00
Степень объективности регистрируемых результатов ультразвуко admin Статьи о дефектоскопии 1 17.11.2012 19:14


Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

VK Defektoskopist OK Defektoskopist Facebook Defektoskopist Instagram Defektoskopist YouTube Defektoskopist


Текущее время: 12:31. Часовой пояс GMT +3. Copyright ©2000 - 2020. Перевод: zCarot.
Внимание, коллеги! В целях нормальной работы форума администрация оставляет за собой право на обработку персональных данных зарегистрированных пользователей. В случае вашего несогласия просьба написать жалобу на defektoskopist.ru@gmail.com